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Abstract. A relativistic generalization of the quantum-state diffusion model is developed. The
model describes a Dirac electron which is coupled to an external electromagnetic field and
a dissipative environment. A relativistically covariant stochastic Dirac equation is obtained by
regarding the state vector as a functional on a certain set of spacelike hypersurfaces in Minkowski
space and by the definition of an appropriate Hilbert bundle on this set. The integrability
condition of the stochastic process and the corresponding covariant density matrix equation are
derived. Further, the relativistic equations governing the dynamical state-vector localization are
deduced.

1. Introduction

The model of quantum-state diffusion [1–4] represents the time-evolution of an open
quantum system as a stochastic diffusion process in Hilbert space. It has been designed
in order to describe the dynamics of individual quantum systems under the influence of a
dissipative environment. In particular, it describes the localization or state-vector reduction
during a measurement as a dynamical process [5–7].

To recall briefly the basic equation of quantum-state diffusion, consider an open quantum
system the density matrix of which is governed by an equation of motion in Lindblad
form [8],

dρ

dt
= −i[H, ρ] + LρL† − 1

2L
†Lρ − 1

2ρL
†L (1)

where we have chosen units such that ¯h = 1, H is the Hamiltonian andL some Lindblad
operator which describes the dissipation mechanism. Since the generalization to several
Lindblad operators is obvious, we restrict ourselves in this paper to the case of one Lindblad
operatorL. In quantum-state diffusion one replaces the density-matrix equation (1) by the
following stochastic differential equation for the random state vectorϕ,

dtϕ = −iHϕdt + (〈L†〉L− 1
2L
†L− 1

2〈L†〉〈L〉)ϕ dt + (L− 〈L〉)ϕ dW (t) (2)

where dtϕ = ϕ(t + dt) − ϕ(t), 〈L〉 = 〈ϕ|L|ϕ〉 denotes the quantum expectation value,
and dW(t) is the differential of a complex Wiener process. From equation (2) the density-
matrix equation (1) is recovered by defining the density-matrix as the covariance matrix of
the process,

ρ = E{|ϕ〉〈ϕ|} (3)

whereE denotes the expectation value of the process.
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As it stands, equation (2) is a non-relativistic state-vector equation. The central aim of
this paper is to demonstrate that the stochastic formulation of open quantum systems within
the quantum-state diffusion model can be extended to relativistic quantum mechanics. In
other words, we shall show that the equations of quantum-state diffusion can be cast into a
form which is covariant under Lorentz transformations. From a fundamental point of view
this is an important issue since Lorentz covariance implies that the stochastic formulation is
in agreement with the relativity principle. In order to be specific we consider in the following
a single Dirac electron in an external electromagnetic field as the quantum system. Thereby
we assume that the external fields are so weak that a sensible one-particle description is
justified. Our aim is thus to construct a stochastic Dirac equation which takes the form of
a covariant generalization of equation (2).

The basic idea underlying our construction of a relativistic quantum-state-diffusion
theory is quite similar to that of the Schwinger–Tomonaga formulation of relativistic
quantum-field theory [9]. In an attempt to write the Schrödinger equation for the state
vector9 of a quantum field in a covariant form, Schwinger and Tomonaga regarded9

as a functional9 = 9[σ ] on the set of spacelike hypersurfacesσ in Minkowski space.
This ansatz leads to the following manifestly covariant state-vector equation, the so-called
Schwinger–Tomonaga equation,

δ9[σ ]

δσ (x)
= −iH(x)9[σ ] (4)

whereH(x) denotes the Hamiltonian density of the theory at the spacetime pointx. We
shall follow a similar strategy in this paper: we consider below the Dirac wavefunctionψ

for a single electron not as a function on the spacetime continuum but rather as a functional
on a certain set of spacelike hypersurfaces. A similar idea has been proposed in [10] to
develop a covariant formulation of non-local quantum measurements.

The Schwinger–Tomonaga formulation deals, of course, with a closed quantum system.
Our task will therefore be to couple, in a Lorentz covariant manner, additional dissipative
and stochastic terms to an equation of the above type. It will be shown that this can, in
fact, be done in such a way that a relativistic quantum-state-diffusion equation is obtained.
Our formulation will be very general since it allows the use of Lindblad operators of any
form. In particular it enables us to include local as well as non-local operators.

The paper is organized as follows. In section 2 we introduce an appropriate
parametrization for the set of flat, spacelike hypersurfaces that will be used in our
construction. Each hypersurface is equipped with a covariant scalar product making the
space of Dirac wavefunctions on each hypersurface a Hilbert space. Further, we formulate
the time evolution according to Dirac’s equation in a manner similar to the Schwinger–
Tomonaga equation (4).

Section 3 deals with our construction of a covariant quantum-state-diffusion equation for
the Dirac electron. Its most important mathematical and physical properties are discussed. In
particular, we derive the corresponding covariant density-matrix equations and demonstrate
the normalization of the state vector. Our parametrization of the hypersurfaces in Minkowski
space singles out a specific point which, for simplicity, is chosen to be the origin of the
coordinate system. Restricting ourselves first to homogeneous Lorentz transformations
this point is left invariant and a theory which is covariant under homogeneous Lorentz
transformations is obtained. In order to cope with spacetime translations this distinguished
point will be given an objective physical meaning as an event in spacetime connected with
the preparation process of the initial condition. It will be shown that a stochastic Dirac
equation is then obtained which is covariant under inhomogeneous Lorentz transformations.
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In our formulation of covariance the stochastic time-evolution of the state vector is, therefore,
closely connected with the initial preparation event and its invariant future light cone.
Finally, we derive the covariant equations governing the dynamical localization of the state
vector.

Section 4 contains a summary and our conclusions.

2. The Dirac equation on the set of flat, spacelike hypersurfaces

In this section we shall introduce our basic notions and, in particular, the phase space on
which the stochastic process of relativistic quantum-state diffusion is defined. The space6

of all flat, spacelike hypersurfacesσ in Minkowski space will be introduced in section 2.1.
On using the Dirac current one can define on each spacelike hypersurfaceσ a Hermitian
scalar product. With this scalar product the set of all Dirac wavefunctions on a given
hypersurfaceσ becomes a Hilbert space. The set of all these Hilbert spaces forms a so-
called Hilbert bundle (section 2.2). It will then be shown that the Dirac equation defines a
unitary evolution equation in this Hilbert bundle (section 2.3). Moreover, the condition that
follows from the integrability of the obtained evolution equation will be derived.

2.1. Flat, spacelike hypersurfaces in Minkowski space

In the following a point in Minkowski spaceR4 will be denoted byx = (xµ) = (x0, xi) =
(x0,x), where greek indices run from 0 to 3, and latin indices from 1 to 3. The Lorentz
scalar (inner) product is then given byx · y = xµyµ = x0y0−x · y. Throughout this paper
we choose units such thatc = h̄ = 1. Lorentz transformations are written as

x ′µ = 3µ
νx
ν. (5)

For the sake of clarity we shall consider here transformations3 in the subgroup of
homogeneous, proper, orthochronous Lorentz transformations. The generalization to
inhomogeneous Lorentz transformations and the proof of Poincaré covariance will be given
in section 3.5.

Consider the interiorF+ of the forward (future) light cone based at the origin of a given
coordinate system. Clearly, the points ofF+ are given by the conditions

x2 ≡ (x0)2− x · x > 0 x0 > 0. (6)

Each flat, spacelike hypersurfaceσ in Minkowski space which crossesF+ can then be
characterized uniquely by the following equation

nµxµ = a. (7)

Here,n is a unit 4-vector normal to the hypersurfaceσ ,

n2 = nµnµ = 1 n0 > 0 (8)

anda is a positive Lorentz invariant scalar which represents the Lorentz distance ofσ to the
origin. Note thatn is a timelike vector since the hypersurface is assumed to be spacelike.
Thus, each hypersurfaceσ that crossesF+ is uniquely defined by its unit normal 4-vector
n and by a Lorentz invariant scalara.

Alternatively, we can define the 4-vectors = an and rewrite equation (7) as

sµxµ = s2. (9)

We then haves2 = a2 > 0 ands0 > 0. The 4-vectors therefore lies within the interior of
the future light coneF+. In the following we shall use both parametrizations of the flat,
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Figure 1. Geometrical construction of the hypersurfaceσ(s).

spacelike hypersurfaces. When using the parametrization byn anda we writeσ = σ(n, a),
when using the parametrization by the 4-vectors we write σ = σ(s). Clearly, we have
σ(n, a) = σ(s) sinces = na. We remark that the hypersurfaceσ(s) is the tangent space
of the hyperboloid defined by the equationx2 = s2 at the pointx = s. Using this fact it is
easy to visualize the geometrical construction of the hypersurfaceσ(s) (see figure 1).

The set of all hypersurfacesσ(s) will be denoted by6. The physical relevance of this
space for our construction stems from the following facts. Since the forward light cone
F+ is mapped onto itself under Lorentz transformations3, also the set6 is mapped onto
itself under these transformations. That is, ifσ belongs to6, then also3σ belongs to
6. In the special casen = (1, 0, 0, 0) the corresponding hypersurface is simply the three-
dimensional position space at fixed timex0 = t = a. Since anyn can be transformed into
(1, 0, 0, 0) by a suitable Lorentz transformation, the space6 introduced above consists of
those hypersurfaces that appear as ordinary 3-space at some fixed, positive time in some
Lorentz frame. Thus,6 is the space of all instantaneous hypersurfaces (with positive time
coordinate) in all inertial frames. As will be shown in section 3, on the basis of this
construction a natural relativistically covariant formulation of the quantum-state-diffusion
model emerges.

As already mentioned, the above construction is similar to the well-known Schwinger–
Tomonaga formulation [9] of relativistic quantum-field theory. For the reason explained
above we restrict ourselves, however, toflat hypersurfaces. Being much simpler technically,
this restriction turns out to be fully sufficient for our purpose.

Of course, by restricting ourselves to homogeneous Lorentz transformations we have
in the above construction distinguished a specific point, namely the base pointx = 0 of
the future light cone. This restriction will be removed in section 3.5 where we shall give a
formulation of quantum-state diffusion that is covariant under Poincaré transformations.

2.2. The Hilbert bundle

With each hypersurfaceσ(s) we can associate a Hilbert spaceH(s) of Dirac wavefunctions
in the following way. Each pointx ∈ σ(s) has a unique representation of the form
x = (x0(s,x),x), wherex ∈ R3 and the time coordinate is given by

x0(s,x) = s · x+ s
2

s0
= n · x+ a

n0
. (10)

On each hypersurfaceσ(s) we can then introduce a Dirac wavefunctionψ by writing

ψ(x) = ψ(s,x). (11)

This equation means thatψ(s,x) is the value of the Dirac wavefunctionψ taken at the
point x = (x0(s,x),x) ∈ σ(s).
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In order to make the set of Dirac wavefunctions on a fixed hypersurfaceσ(s) a Hilbert
space we need to define a positive definite Hermitian scalar product in this space. To this
end, we observe first that the Lorentz metric induces a positive, three-dimensional volume
element dσ on each hypersurface given by

dσ = 1

n0
d3x. (12)

Sincen is the unit vector normal toσ(s) the 4-vectornµdσ is the surface element of the
hypersurface. On using the Dirac current

jµ = ψ̄γ µψ (13)

where ψ̄ = ψ†γ 0 and theγ µ denote the usual gamma matrices (we use the notation of
[11]), we can form the Lorentz invariant bilinear expression

〈ψ |ψ〉s ≡
∫
σ

jµnµ dσ. (14)

Physically this expression represents the probability flow through the hypersurfaceσ(s) and
suggests the following definition of a Hermitian scalar product:

〈ψ |φ〉s ≡
∫
σ

dσψ̄n/φ =
∫

d3x

n0
ψ†(s,x)γ 0n/φ(s,x) (15)

where we definen/ ≡ nµγ µ. It is easy to show that the expression (15) has the properties of
a Hermitian scalar product. In particular it is a positive definite Hermitian form. This is a
direct consequence of the fact that the(4× 4)-matrix γ 0n/ is positive definite. Note further
that for the special casen = (1, 0, 0, 0), that is, fors = (a, 0, 0, 0) definition (15) reduces
to the usual scalar product [11] taken at a fixed timex0 = t = a,

〈ψ |φ〉(a,0,0,0) =
∫

d3x ψ†(t,x)φ(t,x). (16)

The space of Dirac spinors onσ(s) with finite norm

||ψ || ≡
√
〈ψ |ψ〉s (17)

forms a Hilbert space which will be denoted byH(s). Thus, we have associated with each
hypersurface a corresponding Hilbert space of Dirac wavefunctions,

σ(s) 7→ H(s). (18)

Note that, in mathematical terms, the mapping (18) defines a so-called Hilbert bundle. Its
base manifold consists of the various hypersurfacesσ(s) and its fibres are given by the
Hilbert spacesH(s) attached to these surfaces.

2.3. Unitary time-evolution according to Dirac’s equation

We now turn to the description of the dynamics according to the Dirac equation

(iγ µ[∂µ + ieAµ(x)] −m)8(x) = 0 (19)

for an electron with chargee and massm in an arbitrary external electromagnetic field
described by the 4-vector potentialAµ(x). Any solution of equation (19) defines a Dirac
wavefunction8 = 8(x) on the spacetime continuum. Our aim is to reformulate the Dirac
equation as a differential equation in the variablessµ which parametrize the hypersurfaces
σ(s). The resulting equation then describes how the Dirac wavefunction changes when
going from one hypersurface to another. To this end, we first write equation (19) as

∂08 = −iγ 0(−iγ · ∇+ eA/(x)+m)8 ≡ −iHD8 (20)
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where HD denotes the Dirac Hamiltonian. Restricting the solution8(x) to some
hypersurfaceσ(s) we obtain the Dirac wavefunction on that surface. We therefore have

ψ(s,x) = 8(x0(s,x),x). (21)

Differentiating this equation with respect tosµ and using the Dirac equation (20) one finds

∂

∂sµ
ψ(s,x) = ∂x0

∂sµ
(∂08)(x) = −i

∂x0

∂sµ
HD8(x

0,x). (22)

Note that in the last equation the differential operator∇ contained inHD acts only on the
second argumentx of 8. Since

(∂i8)(x
0,x) = ∂i8(x0,x)− ∂x

0

∂xi
(∂08)(x

0,x) = ∂iψ(s,x)− si

s0
(∂08)(x

0,x) (23)

where(∂i8) and(∂08) denote partial and∂i8 total derivatives, we find

HD8(x
0,x) = γ 0(−iγ · ∇+ eA/(x)+m)8(x0,x)

= γ 0(−iγ · ∇+ eA/(x)+m)ψ(s,x)+ γ 0
(
+iγ · s

s0
(∂08)(x

0,x)
)

= HDψ(s,x)+ iγ 0γ · s
s0
(∂08)(x

0,x)

= i(∂08)(x
0,x). (24)

From the last equation we obtain(
I − γ 0γ · s

s0

)
(∂08) = −iHDψ(s,x) (25)

whereI denotes the unit matrix. On multiplying this equation bys0γ 0 we find

s/(∂08) = −is0γ 0HDψ(s,x). (26)

Now, multiply both sides bys/, use the fact thats/s/ = s2, and divide bys2. This yields the
following equation for the time derivative of8,

(∂08)(x
0,x) = −i

s0s/

s2
γ 0HDψ(s,x). (27)

Inserting this expression into equation (22) one obtains

∂

∂sµ
ψ(s,x) = −i

(
s0

s2

∂x0

∂sµ

)
s/γ 0HDψ(s,x). (28)

Using equation (10) it is easy to verify that

s0 ∂x
0

∂sµ
= 2sµ − xµ. (29)

Thus, we are finally led to the following differential equation

∂

∂sµ
ψ(s,x) = −iVµK(s)ψ(s,x) (30)

where we have defined the operators inH(s)

Vµ ≡ Vµ(s) ≡ 1

s2
(2sµ − xµ) (31)

K(s) ≡ s/γ 0HD = s/(−iγ · ∇+ eA/(x0(s,x),x)+m). (32)

Equation (30) which we call transport equation is just a reformulation of the Dirac
equation (20) which represents an evolution equation in our Hilbert bundle. It describes
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the change of the Dirac wavefunction when going from one flat, spacelike hypersurface to
another. As will be demonstrated in the next section equation (30) is an appropriate starting
point for the formulation of a relativistic theory of quantum-state diffusion.

To understand equation (30) in more detail it is helpful to write it in terms of our
(n, a)-parametrization of the hypersurfaces given in equation (7). This is done most easily
by employing the relation

∂

∂sµ
= 1

a
(δνµ − nµnν)

∂

∂nν
+ nµ ∂

∂a
. (33)

This relation enables one to split equation (30) into two separate equations

∂

∂a
ψ(n, a,x) = −iH(s)ψ(n, a,x) (34)

(δνµ − nµnν)
∂

∂nν
ψ(n, a,x) = −iWµH(s)ψ(n, a,x) (35)

where we have defined the operators

H(s) ≡ 1

a
K(s) = n/γ 0HD (36)

Wµ ≡ Wµ(s) = sµ − xµ. (37)

Equation (34) describes how the Dirac wavefunction changes under parallel translations of
the hypersurfaces. Note that if one considers the family of equal-time surfaces parametrized
by s = (a, 0, 0, 0), one hasH(s) = HD and, therefore, equation (34) reduces to the Dirac
equation (20). Equation (35) represents the change of the wavefunction due to variations of
the normal vectorn of the hypersurfaces. These variations may be realized by varying the
tip of the vectors along the hyperboloid depicted in figure 1. Note that the tensorδνµ−nµnν
on the left-hand side of equation (35) acts as an orthogonal projection onto the hypersurface
σ(n, a). Consequently, the 4-vectorWµ (which has to be regarded as an operator inH(s))
must satisfy the conditionnµWµ = 0, which is easily verfied.

It can be shown that the operators introduced in equations (31), (32), (36) and (37)
are Hermitian with respect to the scalar product (15). This fact is obviously true for the
operatorsVµ andWµ since they are diagonal in spin space. To prove the hermiticity of
K(s) one uses the fact that the Dirac operator is Hermitian inH(a, 0, 0, 0),∫

d3x ψ†HDφ =
∫

d3x (HDψ)
†φ. (38)

Therefore, we find on using (32) ands/†γ 0 = γ 0s/

〈ψ |Kφ〉s =
∫

d3x

s0
ψ̄s/Kφ = s2

∫
d3x

s0
ψ†HDφ

= s2
∫

d3x

s0
(HDψ)

†φ =
∫

d3x

s0
(Kψ)†γ 0s/φ

= 〈Kψ |φ〉s .
This proves the hermiticity ofK(s) and also that ofH(s) sinceH(s) = K(s)/a.

The operatorVµK appearing on the right-hand side of our transport equation (30) is not
Hermitian, sinceVµ andK(s) do not commute. At first glance it might therefore seem that
the transport equation does not preserve the norm of the wavefunction. However, one has to
take care of the fact that by varyings also the scalar product changes. We now demonstrate
that, taking into account thes-dependence of the scalar product, the transport equation is,
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in fact, norm-conserving and thus defines a unitary evolution in the Hilbert bundle. Using
the definition of the scalar product we obtain

∂

∂sµ
〈ψ |ψ〉s =

〈
ψ

∣∣∣∣ ∂∂sµψ
〉
s

+
〈
∂

∂sµ
ψ

∣∣∣∣ψ〉
s

+
∫

d3x

s0
ψ†γ 0γµψ − 1

s0

∂s0

∂sµ
〈ψ |ψ〉s . (39)

The last two terms on the right-hand side stem from thes-dependence of the scalar product.
SinceVµ andK(s) are Hermitian we can write〈

ψ

∣∣∣∣ ∂∂sµψ
〉
s

+
〈
∂

∂sµ
ψ

∣∣∣∣ψ〉
s

= −i〈ψ |[Vµ,K]|ψ〉s . (40)

As can be easily verified the following commutation relation holds

[Vµ,K] = − i

s2
s/γµ + i

s0
δ0,µ. (41)

Thus we get〈
ψ

∣∣∣∣ ∂∂sµψ
〉
s

+
〈
∂

∂sµ
ψ

∣∣∣∣ψ〉
s

= −i

〈
ψ | − i

s2
s/γµ + i

s0
δ0,µ|ψ

〉
s

= −
∫

d3x

s0
ψ†γ 0γµψ + 1

s0

∂s0

∂sµ
〈ψ |ψ〉s . (42)

Looking at equation (39) we see that the additional terms that arise due to thes-dependent
scalar product are cancelled by the terms on the right-hand side of equation (42) which stem
from the non-vanishing commutator (41). Thus we have

∂

∂sµ
〈ψ |ψ〉s = 0. (43)

The transport equation (30) is a partial differential equation in four variablessµ. The
usual conditions for the integrabilty of such an equation can be written as

∂2ψ

∂sν∂sµ
= ∂2ψ

∂sµ∂sν
. (44)

We know, however, by construction that our transport equation is integrable. Given some
initial condition on a specific hypersurface, its solution is given by (21), where8 is the
corresponding solution of the Dirac equation. Thus, inserting the transport equation into
(44) we get the following important relation which may also be verified by an explicit
calculation:

∂

∂sν
(VµK)− ∂

∂sµ
(VνK)− i[VµK, VνK] = 0. (45)

This relation will be used later on when we will deal with the integrabilty condition of the
stochastic process of relativistic quantum-state diffusion.

3. Relativistic quantum-state diffusion

We demonstrate in this section that the construction of the preceding section enables us to
formulate a relativistically covariant quantum-state diffusion equation. Such an equation is
obtained (section 3.1) by adding appropriate dissipative and stochastic terms to the transport
equation (30). The formal proof of covariance of the resulting stochastic Dirac equation will
be given in section 3.2. Furthermore, we demonstrate that the stochastic Dirac equation
preserves the norm of the state vector and we shall derive the corresponding covariant
density-matrix equation (section 3.3). In order to have a unique, single-valued distribution
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function of the stochastic process a certain integrability condition has to be satisfied. This
condition will be derived and discussed in section 3.4. We construct in section 3.5 a
stochastic Dirac equation which is covariant under the larger group of proper, orthochronous
Lorentz transformations including spacetime translations. Finally, the localization properties
of the stochastic process are discussed in section 3.6.

3.1. Equation of motion for the state vector

We start by rewriting equation (30) as

dψ = −iVµK(s)ψ dsµ (46)

whereψ ≡ ψ(s,x), and dψ ≡ ψ(s + ds,x) − ψ(s,x). Our aim is to turn equation (46)
into a stochastic differential equation by adding a dissipative and a stochastic term to its
right-hand side. In order to find these terms we demand that the resulting equation is
Lorentz covariant and that it takes a form which is similar to the non-relativistic quantum-
state-diffusion equation (2).

We are looking for an equation in the variablessµ which label the hypersurfacesσ(s).
Therefore, we associate to each hypersurfaceσ(s) a Lindblad operatorL(s) which acts on
the corresponding state spaceH(s). Thus, for each Hilbert space in our Hilbert bundle we
introduce a corresponding Lindblad operatorL(s), in the same way as we have introduced
an operatorK(s), for example, for each Hilbert space in the preceding section.

Since each Hilbert spaceH(s) is equipped with a scalar product we can use this scalar
product to define the adjointL†(s) of L(s). Furthermore, we replace the expectation values
occuring in the quantum-state-diffusion equation (2) by the expectation values

〈L〉s ≡ 〈ψ |L(s)|ψ〉s (47)

defined through the scalar product (15) inH(s). All that we have to do in order to end
up with a covariant equation then is to construct a Lorentz invariant time parameter that
replaces the timet of equation (2). This parameter is taken to be the Lorentz invariant
scalara =

√
s2 whose differential is given by

da = nµdsµ. (48)

This choice is motivated by the fact thata is a Lorentz invariant quantity formed by the
4-vectorsµ which reduces to the time coordinatex0 for the equal time hypersurfaces given
by s = a(1, 0, 0, 0). With this choice the dissipative part of our stochastic Dirac equation
will be proportional to da and, in order to arrive at a closed equation of motion for the
density matrix (see section 3.3), the stochastic part of that equation will be proportional
to the differential dW(a) of a Lorentz invariant Wiener process. Thus, guided by the
requirements of relativistic covariance we propose the following stochastic Dirac equation

dψ = −iVµK(s)ψ dsµ + nµ(〈L†〉sL(s)− 1
2L
†(s)L(s)− 1

2〈L†〉s〈L〉s)ψ dsµ

+(L(s)− 〈L〉s)ψ dW(a) (49)

where dW(a) denotes the differential of a complex Wiener process with independent real
and imaginary parts satisfying

〈dW (a)〉 = 0 〈dW ∗ (a) dW(a)〉 = da (50)

where the angular brackets denote the expectation value of the Wiener process.
Equation (49) is our central result. It represents a relativistically covariant quantum-state-
diffusion equation for a Dirac electron in an external electromagnetic field.
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3.2. Proof of covariance

We shall give here the formal proof of the Lorentz covariance of the stochastic Dirac
equation (49). To this end, consider two Lorentz framesA (coordinatesx) and B
(coordinatesx ′) whose spacetime coordinates are connected by the Lorentz transformation
(5). We then have the following transformation law

ψ ′(s ′,x′) = S(3)ψ(s,x(s ′,x′)) ≡ U(s ′,3)ψ(s,x′) (51)

wheres ′µ = 3µ
νs
ν , andS(3) denotes the usual spinor representation of the Lorentz group

[11]. The functionx = x(s ′,x′) specifies the connection between the space coordinatesx′

and the space coordinatesx of a point on that hypersurface which is given bysµ in frame
A and bys ′µ in frameB. This function is given by

xi(s ′,x′) = (3−1)i0x
′0(s ′,x′)+ (3−1)ij x

′j . (52)

The corresponding transformation law for the operatorL(s) takes the form

L′(s ′) = U(s ′,3)L(s)U †(s ′,3). (53)

From the active point of view, the transformation (53) implies that the dissipative
environment is transformed in the same way as the quantum object itself (the Dirac electron).
To demonstrate that equation (49) is covariant under these transformation laws we first look
at the transformation property of the scalar product (15). As is easily demonstrated we have

〈ψ ′|ψ ′〉s ′ = 〈ψ |ψ〉s (54)

which means that the operatorU(s ′,3) defined in (51) is unitary. In view of equation (53)
we therefore obtain

〈L′〉s ′ = 〈L〉s 〈L′†〉s ′ = 〈L†〉s . (55)

Now, the differential of the wavefunction in frameB is

d′ψ ′ = U(s ′,3)dψ + ∂U

∂s ′µ
ψ ds ′µ. (56)

Substituting dψ by the right-hand side of equation (49) and using equations (51) and (53)
we find

d′ψ ′ = −i

{
U(s ′,3)V ′µK(s)U

†(s ′,3)+ i
∂U

∂s ′µ
U †
}
ψ ′ ds ′µ

+(〈L′†〉s ′L′(s ′)− 1
2L
′†(s ′)L′(s ′)− 1

2〈L′†〉s ′ 〈L′〉s ′)ψ ′ da′
+(L′(s ′)− 〈L′〉s ′)ψ ′ dW(a′).

Comparing this equation with (49) we immediately see that our stochastic Dirac equation
is covariant if the following relation holds:

U(s ′,3)V ′µK(s)U
†(s ′,3)+ i

∂U

∂s ′µ
U † = V ′µK ′(s ′) (57)

where

K ′(s ′) = s/′(−iγ · ∇′ + eA/′(x ′0(s ′,x′),x′)+m). (58)

Equation (57) may be verified by an explicit calculation. Note however, that this equation
expresses nothing but the covariance of our stochastic Dirac equation (49) forL(s) ≡ 0,
i.e. the covariance of equation (30). The latter fact, in turn, is to be expected since (30) has
been obtained from a Lorentz covariant equation, that is, from Dirac’s equation (19).

Going through the above proof we see that covariance is, essentially, a consequence of
the following facts.
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(1) The dynamical variablessµ form a 4-vector whose range is the interior of the forward
light coneF+ and is hence Lorentz invariant.

(2) The deterministic transport equation (30) is Lorentz covariant by construction.
(3) The transformation law for the Lindblad operators (53) together with the use of

our Lorentz covariant scalar product (15) implies that the dissipative part of equation (49)
transforms as a scalar.

(4) Sincea is a Lorentz invariant quantity the Wiener differential dW(a) is a Lorentz
invariant process.

3.3. Normalization and density-matrix equation

In order to find the change of the norm of the stochastic Dirac wavefunction we determine
using the Ito calculus

d〈ψ |ψ〉s = 〈dψ |ψ〉s + 〈ψ |dψ〉s + 〈dψ |dψ〉s + terms from derivative of scalar product.

(59)

The terms that stem from the derivative of the scalar product are the last two terms on the
right-hand side of equation (39) multiplied by dsµ. Since we know already that these terms
and the terms from the deterministic part of equation (49) cancel each other, we immediately
get

d〈ψ |ψ〉s = 〈ψ |〈L†〉sL(s)+ 〈L〉sL†(s)− L†(s)L(s)− 〈L†〉s〈L〉s |ψ〉s da

+〈ψ |(L† − 〈L†〉s)(L− 〈L〉s)|ψ〉s da

= 0. (60)

The covariant stochastic Dirac equation (49) yields a covariant equation of motion for
the density matrix. The latter is defined in terms of the stochastic Dirac wavefunction by

ρ(s;x,y) ≡ E
{
ψ(s,x)ψ†(s,y)γ 0n/

1

n0

}
(61)

whereE denotes the expectation value of the stochastic process. Defining the density matrix
in this way we use the following definition for the trace of an operatorA(s),

trA(s) ≡
∫

d3x trspinA(s;x,x) (62)

where trspin denotes the trace over the spinor indices. On using this definition we obtain
from (61)

tr ρ(s) = E
{∫

d3x trspinψ(s,x)ψ
†(s,x)γ 0n/

1

n0

}
= E{〈ψ |ψ〉s} = 1

and

tr{ρ(s)A(s)} = E{〈A〉s}. (63)

Moreover, definition (61) ensures that the density matrixρ(s) is Hermitian with respect to
the scalar product inH(s).

On using equation (49) a straightforward calculation yields the following equations of
motion for the density matrix,

∂ρ

∂a
= −i[H(s), ρ] + L(s)ρL†(s)− 1

2L
†(s)L(s)ρ − 1

2ρL
†(s)L(s) (64)

(δνµ − nµnν)
∂ρ

∂nν
= −i[WµH(s), ρ]. (65)
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Equation (64) is a density matrix equation in Lindblad form. If we choosen as the unit
vector in the direction of the time axis,H(s) becomes equal to the Dirac HamiltonianHD

and equation (64) takes on precisely the form of equation (1). Then-dependence ofρ is
specified by equation (65).

3.4. Integrability condition of the process

We have seen in section 2.3 that the deterministic transport equation (30) is integrable.
This is due to the fact that its solutions can be obtained by restricting the solutions of the
Dirac equation (20) to the various hypersurfaces, as is expressed in equation (21). In other
words, any solutionψ(s,x) of the transport equation is really a function on the spacetime
continuum. This is, in general, not true for the solutions of equation (49). Consider two
different hypersurfacesσ(s) andσ(s ′) with some common pointx, say. Then the values
ψ(s,x) andψ(s ′,x) of the wavefunctions on the different hypersurfaces at the common
spacetime point do not, in general, coincide. Thus, the solutions of equation (49) are, in
general, not wavefunctions on Minkowski space. However, what we do require is that
the solution of (49) yields a probability distribution for the random wavefunctions which
represents a function on the set6 of flat, spacelike hypersurfaces. For this to be true a
certain integrability condition has to be satisfied which will be derived in this section.

To begin with, we observe that equation (49) is not a stochastic differential equation for
the wavefunctionψ in the usual sense. The reason is that equation (49) is an equation in
four variables which form the 4-vectorsµ. To explain the meaning of equation (49) more
precisely consider two pointssi and sf within the forward light cone such thataf > ai
and a curves(τ ) that connects these points, i.e. with initial pointsi and endpointsf . We
assume that da > 0 alongs(τ ). Without restriction we may then choose the parameterτ of
the curve in such a way that da = dτ . Evaluated along such a curve equation (49) yields
the following ordinary stochastic differential equation

dτψ = −iVµK(s)ψ
dsµ

dτ
dτ +

(
〈L†〉sL(s)− 1

2
L†(s)L(s)− 1

2
〈L†〉s〈L〉s

)
ψ dτ

+ (L(s)− 〈L〉s) ψ dW(τ) (66)

wheres ≡ s(τ ), ψ ≡ ψ(τ,x), and dτψ ≡ ψ(τ + dτ,x) − ψ(τ,x). This is a stochastic
differential equation for the processψ(τ,x) in the usual sense and can be dealt with by the
well-known Ito calculus. Thus, we see that equation (49) associates to each curves(τ ) a
stochastic processψ(τ,x) along this curve.

For example, if dsµ = nµda is valid along the curve, that is, ifs(τ ) is a straight
line with fixed directionn, the first term on the right-hand side in equation (66) becomes
equal to−iH(s)ψ dτ , where the Hermitian operatorH(s) is defined by equation (36).
H(s) reduces to the Dirac Hamiltonian ifn is the unit vector in the direction of the time
axis, n = (1, 0, 0, 0). Thus, in this case the form of equation (66) is identical to that of
equation (2).

It also follows from these considerations that in order for equation (49) to define a
unique stochastic processψ(s,x) for all s, the following integrability condition must be
satisfied. Suppose we have two different curvess1(τ ) and s2(τ ) of the above type that
connect the given pointssi and sf (see figure 2). Starting from the same initial conditions
at the pointsi we then get, according to the above prescription, two random wavefunctions
ψ1 andψ2 at the common endpointsf ; ψ1 is obtained by following the stochastic evolution
alongs1(τ ) andψ2 by the stochastic evolution alongs2(τ ). The integrability condition then
states that the random wavefunctionsψ1 andψ2 coincide in the sense that they have the
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Figure 2. Graphical representation of the integrability condition for the stochastic process.

same probability distributions.
The integrability condition formulated above ensures that the probability distribution

of ψ(s,x) is a single-valued function ofs, that is, a single-valued function on the whole
interior of the forward light coneF+. In particular, this condition implies that the density
matrix equation is integrable. Given some initial condition on a specific hypersurface, this
means that equations (64) and (65) have a unique solutionρ(s) which is a function on the
future light cone.

Mathematically, the integrability condition is expressed most conveniently by
reformulating the stochastic Ito equation (49) by means of the corresponding Fokker–Planck
equation for the probability density functionalP = P [s, ψ ] which is given by

∂

∂sµ
P [s, ψ ] = {Lµ(s)+ nµM(s)}P [s, ψ ] (67)

where we have introduced the first-order functional differential operator describing the
deterministic drift

Lµ(s) = i
∫

d3x

(
δ

δψA(x)
[Gµψ(x)]A − δ

δψ∗A(x)
[Gµψ(x)]

∗
A

)
(68)

(A = 1, . . . ,4 denotes the spinor index) and the second-order functional differential operator
describing the diffusion process

M(s) =
∫

d3x

∫
d3x ′

δ2

δψA(x)δψ
∗
B(x

′)
[(L− 〈L〉s)ψ(x)]A[(L− 〈L〉s)ψ(x′)]∗B. (69)

In the above equationsδ/δψA(x) and δ/δψ∗A(x) denote functional Wirtinger derivatives
[12, 13]. The differential equation described byLµ is given by

∂

∂sµ
ψ(s,x) = −iGµψ(s,x)

≡ − iVµK(s)ψ + nµ(〈L†〉sL(s)− 1
2L
†(s)L(s)− 1

2〈L†〉s〈L〉s)ψ. (70)

One can now express the integrability condition directly in terms of an equation for the
probability distribution itself, namely by

∂2P

∂sν∂sµ
= ∂2P

∂sµ∂sν
. (71)

Inserting (67) into (71) we get(
∂Lµ
∂sν
− ∂Lν
∂sµ

)
P + (LµLν − LνLµ)P
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+nµ
(
∂M
∂sν
− (LνM−MLν)

)
P − nν

(
∂M
∂sµ
− (LµM−MLµ)

)
P = 0.

Setting equal to zero the first line in this equation we obtain a condition which is equivalent to
the integrability condition for the deterministic drift (70). It is thus convenient to formulate
the integrability condition as follows: (i) the deterministic drift of the process is integrable
and (ii) the condition

nµ

(
∂M
∂sν
− (LνM−MLν)

)
P − nν

(
∂M
∂sµ
− (LµM−MLµ)

)
P = 0 (72)

holds. By a lengthy but straightforward calculation and by using the integrability condition
(45) of the transport equation one can show that the integrability condition for the
deterministic drift is satisfied if the Lindblad operatorL(s) obeys the equation

∂L(s)

∂sµ
= −i[VµK(s), L(s)] + nµR(s) (73)

whereR(s) can be anys-dependent operator. We now demonstrate that condition (73)
also guarantees that (72) is satisfied. This shows then that (73) is a sufficient integrability
condition.

Condition (72) means that for any functionalF = F [ψ ] we must have

nµE

{
∂Mad

∂sν
F + (Lad

ν Mad−MadLad
ν )F

}
−nνE

{
∂Mad

∂sµ
F + (Lad

µMad−MadLad
µ )F

}
= 0. (74)

Note that the expectation valueE of the process is defined explicitly in terms of the
probability density functional as [12, 13]

E{F } ≡
∫

DψDψ∗P [s, ψ ]F [ψ ]. (75)

The index ‘ad’ indicates the adjoint functional operator. Performing the functional
differentiations we get after some algebra the following equation which is equivalent to
equation (74),

nµ

∫
d3x

∫
d3x ′ E

{
δ2F

δψA(x)δψ
∗
B(x

′)
(Qνψ(x))A[(L− 〈L〉s)ψ(x′)]∗B

}
−nµ

∫
d3x

∫
d3x ′ E

{
δ2F

δψA(x)δψ
∗
B(x

′)
[(L− 〈L〉s)ψ(x)]A(Qνψ(x

′))∗B

}
−(µ↔ ν) = 0 (76)

where

Qν ≡ ∂L(s)

∂sν
+ i[VνK(s), L(s)] −

〈
∂L(s)

∂sν
+ i[VνK(s), L(s)]

〉
s

. (77)

On using equation (73) we observe thatQν is proportional tonν ,

Qν = nν(R − 〈R〉s). (78)

Thus, we immediately see that (76) is fulfilled since the tensornµnν is symmetric.
We now demonstrate that our integrability condition (73) can always be fulfilled. To

prove this we note first that by employing the(n, a)-parametrization of the hypersurfaces
equation (73) can be decomposed into two separate equations,

(δνµ − nµnν)
∂L(s)

∂nν
= −i[WµH(s), L(s)] (79)
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and

∂L(s)

∂a
= −i[H(s), L(s)] + R(s). (80)

Since the operatorR(s) is arbitrary we see from equation (80) that thea-dependence is
not fixed by the integrability condition. This means that one can freely choose thea-
dependence ofL(s) = L(n, a) corresponding to the physical situation under consideration
(see the example below). To show that the integrability condition can always be fulfilled
one therefore has to show that equation (79) is integrable and determines then-dependence
of L(s). This can be done by noting that equation (73) is integrable forR ≡ 0. Employing
equation (73) forR ≡ 0 we obtain

∂2L

∂sν∂sµ
− ∂2L

∂sµ∂sν
= −i

[
∂(VµK)

∂sν
− ∂(VνK)

∂sµ
, L

]
− [VµK, [VνK,L]] + [VνK, [VµK,L]] .

(81)

By means of the Jacobi identity this can be written as

∂2L

∂sν∂sµ
− ∂2L

∂sµ∂sν
= −i

[
∂

∂sν
(VµK)− ∂

∂sµ
(VνK)− i[VµK, VνK], L

]
= 0 (82)

where equation (45) has been used in the second equation. Thus, equation (73) is integrable
for R ≡ 0. We can therefore solve this equation in the neighbourhood of each fixeda to get
a solution of equation (79) for thisa. Since thea-dependence is arbitrary as noted above,
we then have completely fulfilled the integrability condition.

To give an example for the solution of equation (79) we consider a standard example
from quantum optics, i.e. a two-level atom in the radiation field at zero temperature. For this
case we haveL(s = a(1, 0, 0, 0)) = |ψg〉〈ψe| = σ−, whereψg(x) denotes the ground state
andψe(x) the excited state. Denote byφe,g(x) = exp(−iεe,gx0)ψe,g(x) the corresponding
stationary solutions of the Dirac equation with time-independent Dirac HamiltonianHD.
The operatorL(s) defined in the position representation by

L(s;x,y) = ei(εg−εe)aφg(x0(s,x),x)φ†e(x
0(s,y),y)γ 0n/

1

n0
(83)

then fulfils the equation

∂L(s)

∂sν
= −i[VνK(s), L(s)] + i(εg − εe)nνL(s). (84)

Multiplying this equation by the tensor(δνµ − nµn
ν) and summing overν one gets

equation (79). Thus, equation (83) represents the relativistic generalization of the negative
frequency partσ− of the atomic dipole operator which is widely used in quantum optical
applications (see e.g. [14–16]).

The above example also indicates how to solve the integrability condition in the general
case for a time-independent Dirac Hamiltonian: choose first a complete orthonormal set
φα(x) = exp(−iεαx0)ψα(x) of stationary solutions of the Dirac equation corresponding to
the energiesεα. The solution of equation (79) which reduces fors = (a, 0, 0, 0) to some
given operatorL(0) reads

L(s;x,y) =
∑
α,β

ei(εα−εβ )aφα(x0(s,x),x)〈ψα|L(0)|ψβ〉φ†β(x0(s,y),y)γ 0n/
1

n0
. (85)
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Since, as we have just seen, each term in the sum overα and β satisfies equation (79),
equation (85) gives a solution of our integrability condition. On the equal-time hypersurfaces
given bys = (a, 0, 0, 0) we havea = x0 and therefore

L((a, 0, 0, 0);x,y) =
∑
α,β

ψα(x)〈ψα|L(0)|ψβ〉ψ†β(y) = L(0)(x,y) (86)

as required.

3.5. Poincaré covariance

Up to now we have restricted ourselves to homogeneous Lorentz transformations which
leave fixed the originx = 0 of the coordinate system. The definition of the 4-vectors,
of a =

√
s2 and that of the corresponding hypersurfaceσ(s) distinguishes a certain point,

namely the origin of the coordinate system which serves as the base point of the future light
coneF+.

Without additional physical inputthe stochastic Dirac equation (49) isnot covariant
under spacetime translations due to this distinction of a specific point. However, a stochastic
equation of motion whichis, in fact, covariant under general inhomogeneous Lorentz
transformations (Poincaré transformations)

x ′ = 3x + y (87)

can be obtained if one gives this distinguished point (which plays the role of the base
point of the future light cone) an objective physical meaning as a certain spacetime event
b and if one introduces the coordinates ofb as parameters into the stochastic equation
of motion as explained below. The same method is used in the representation theory of
Poincaŕe-covariant quantum-dynamical semigroups for relativistic unstable particles [8].

Once such a pointb has been fixed we may defineF+(b) to be the future light cone
based at this pointb. The interior ofF+(b) is defined by the conditions(x − b)2 > 0 and
x0 − b0 > 0. The former construction is recovered by settingb = 0. The flat, spacelike
hypersurfacesσ = σ(n, a, b) which crossF+(b) can then be parametrized uniquely by the
equation

nµ(xµ − bµ) = a. (88)

This implies that under Poincaré transformations (87) we have the following transformation
laws

b′ = 3b + y n′ = 3n a′ = a s ′ = 3s. (89)

Thus, according to their geometrical meaningn and s transform as true 4-vectors,a
transforms as a scalar andb as a coordinate vector.

To define the spacetime pointb we first remark that in order to describe a physical
situation by means of a stochastic differential equation we need, of course, an initial
condition which can be given by a pure or mixed state. In any case, according to
the rules of quantum mechanics such an initial state requires an appropriate preparation
measurement. The outcome of this measurement constitutes a classical event with certain
spacetime coordinates. The classical event could be defined, for example, by the click in a
particle detector, or by a certain meter position. We can then definebµ as the coordinates
of the classical event of the measurement which leads to the preparation of the initial state.
The interior of the forward light coneF+(b) which defines the admissible hypersurfaces is
then nothing but the absolute future of the classical measuring eventb.
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Starting now from the parametrization (88) and following the line of reasoning of
sections 2 and 3.1 one is then immediately led again to the stochastic Dirac equation (49),
where, however, the 4-vectorsVµ andWµ have to be defined as

Vµ ≡ 1

s2
(2sµ − [xµ − bµ]) Wµ ≡ sµ − [xµ − bµ]. (90)

Note thatWµ is now a 4-vector operator which is tangent to the hypersurfaceσ(n, a, b), that
is, we havenµWµ = 0. The stochastic Dirac equation (49) together with these definitions
and the transformation laws (89) is obviously covariant under Poincaré transformations (87).

We emphasize that covariance under spacetime translations as formulated above is to
be understood in a sense which differs from the usual one. Covariance in the usual sense
means that one has a certain equation of motion which can be shown to be covariant
without reference to an initial condition. In our formulation above, however, covariance
under spacetime translations is guaranteed only if one introduces the initial measurement
eventb and the invariant future light cone originating fromb into the stochastic equation
of motion. Thus, a certain aspect of the initial condition, namely the coordinates of the
measurement event (and not the initial state vector itself) enter the dynamical equation.
Initial condition and stochastic time-evolution are therefore intimately connected in our
theory and translational covariance holds if one transforms the whole equation of motion
together with the invariant future light cone of the measurement event.

3.6. Relativistic localization

One of the most important features of quantum-state diffusion is the localization of
dynamical variables induced by the dissipative and stochastic coupling to the environment
[5, 6]. As an application of our relativistic formulation we shall derive in this section the
relativistic equations governing the localization process.

For the dynamical observable we take the Linblad operatorL(s) itself and assume
that L(s) is self-adjoint and independent ofa. This means thatL(s = (a, 0, 0, 0)) is a
time-independent Schrödinger operator defined on the equal-time hypersurfaces of a certain
coordinate frame. We further assume thatL(s) commutes with the HamiltonianH(s)
defined in equation (36),

[H(s), L(s)] = 0. (91)

It follows then from (80) that the operatorR(s) is identically zero. Thus we have as a
consequence of the integrability condition

∂L(s)

∂sµ
= −i[VµK(s), L(s)]. (92)

This equation represents the relativistic formulation of a quantum non-demolition condition.
Such conditions are employed when discussing localization for so-called wide-open systems
[6]. It is important to note that we cannot simply setHD = 0 as in the non-relativistic theory,
for this would implyK(s) = 0 and the commutation relation (41) would be violated.

Using Ito calculus we obtain for any operatorA(s),

d〈A〉s =
〈
∂A

∂sµ

〉
s

dsµ + 〈dψ |A|ψ〉s + 〈ψ |A|dψ〉s + 〈dψ |A|dψ〉s

+
(∫

d3x

s0
ψ†γ 0γµAψ − 1

s0

∂s0

∂sµ
〈A〉s

)
dsµ (93)
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where the last two terms stem from the derivative of the scalar product (see section 2.3).
By means of the stochastic Dirac equation (49) we find

d〈A〉s =
〈
∂A

∂sµ
+ i[VµK,A]

〉
s

dsµ + 〈AT + T †A+M†AM〉s da

+〈AM〉sdW(a)+ 〈M†A〉s dW ∗(a) (94)

where we have used the commutation relation (41) and introduced the abbreviations

T ≡ 〈L†〉sL(s)− 1
2L
†(s)L(s)− 1

2〈L†〉s〈L〉s
M ≡ L(s)− 〈L〉s .

(95)

Now, if the operatorA(s) = L(s)k is some power ofL(s) we get on using equation (92)
and (94)

d〈Lk〉s = 〈Lk(L− 〈L〉s)〉s(dW(a)+ dW ∗(a)). (96)

Taking the expectation valueE of equation (96) fork = 1 andk = 2 one finds the following
equations for the mean and dispersion ofL,

∂

∂sµ
E{〈L〉s} = 0

∂

∂sµ
Var(L) = 0 (97)

where we have introduced the variance

Var(L) ≡ E{〈L2〉s} − (E{〈L〉s})2 = tr{L2ρ} − (tr{Lρ})2. (98)

Equation (97) states that the usual quantum expectation value and the variance ofL(s) are
constant on all hypersurfaces.

Equation (96) also yields fork = 1

d〈L〉s = σ 2(L)(dW (a)+ dW ∗ (a)) (99)

where we have introduced the dispersion ofL(s) in the stateψ(s,x) by

σ 2(L) ≡ 〈L2〉s − 〈L〉2s . (100)

Thus, as in the non-relativistic theory the self-diffusion ofL(s) is proportional to the
dispersion ofL(s). Localization of the state vector dynamics can be described using the
quantity

Var1(L) = E{σ 2(L)}. (101)

This is the expectation value with respect toP [s, ψ ] of a 4th order moment of the
wavefunction which cannot be expressed in terms of the density matrix. One finds on
using equation (96)

∂

∂a
Var1(L) = −2E{[σ 2(L)]2} (102)

and, equivalently,

∂

∂sµ
Var1(L) = −2nµE{[σ 2(L)]2}. (103)

Equations (102) and (103) represent the covariant equations governing the dynamical
localization in our relativistic theory. Since it follows from equation (102) that

∂

∂a
Var1(L) 6 −2[Var1(L)]

2 (104)

we can conclude that Var1(L), starting from some (positive) value at an initial value ofa,
decreases to zero for increasinga. Note that (101) is the expectation of the dispersion of
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L(s) in the stateψ(s,x). Therefore, if the value Var1(L) = 0 is finally reached, the state
vector ends up with probability 1 in an eigenspace ofL(s). This is just the state-vector
localization to the eigenspaces of the dynamical observableL(s).

We finally remark that the quantum variance Var(L) can be written as a sum of two
variances [17]

Var(L) = Var1(L)+ Var2(L) (105)

where Var1(L) is defined in (101) and Var2(L) is given by

Var2(L) ≡ E{〈L〉2s } − (E{〈L〉s})2. (106)

Sinceψ(s,x) is a random variable,〈L〉s is a real random number. Var2(L) is therefore
the statistical variance of the random number〈L〉s . Since Var1(L) decreases monotonously
to zero for increasinga, and since Var(L) stays constant, it follows that Var2(L) increases
monotonously until it reaches the value Var2(L) = Var(L). This shows that in the final state
of the process the quantum statistical variance Var(L) is equal to the statistical fluctuations
of the stochastic variable〈L〉s measured by Var2(L).

4. Summary and conclusions

In this paper we have generalized the quantum-state-diffusion model to relativistic quantum
mechanics. This has been achieved by introducing the set6 of flat, spacelike hypersurfaces
which cross the future light coneF+ and associating with each hypersurfaceσ ∈ 6 a scalar
product and a Hilbert space of Dirac wavefunctions. On the basis of these constructions a
stochastic Dirac equation for an electron in a dissipative environment has been formulated.
This equation takes the form of a direct generalization of the equation of motion of the
quantum-state-diffusion model.

We have discussed several properties of our stochastic Dirac equation. First, we have
derived the corresponding density matrix equation and the normalization of the state vector.
Further, the integrability condition has been derived which guarantees that the stochastic
process has a unique probability density functional which is single-valued on the whole
interior of the future light cone. It has been demonstrated that the integrability condition can
always be satisfied and some examples of its solution have been discussed. The extension
of the formalism to include Poincaré covariance has been given. Finally, some aspects of
the localization properties of the relativistic theory have been discussed.

Concluding, let us emphasize the main advantages of our relativistic fomulation. First,
by formulating the stochastic process as a process for wavefunctions defined on the
hypersurfaces, that is, as a process in the Hilbert bundle, our stochastic Dirac equation is of
great generality. Since, as we have demonstrated, the integrability condition for the process
can always be solved, we do not have to impose any restriction on the Lindblad operator.
Thus, the Lindblad operator can be any local or non-local operator and the generality of
the non-relativistic theory is maintained in our formulation. This point is essentially what
distinguishes our approach from that of Ghirardiet al [18]. These authors have developed a
stochastic state-vector theory for relativistic quantum fields. Their approach is more general
in the respect that they treat relativistic many-particle systems (although, as it seems, in
their theory difficulties with infinities are more serious than those encountered in usual
quantum-field theory and it is not clear whether their approach yields a renormalizable
theory). However, the approach of [18] is more special than our formulation in the respect
that they treat only interactions involving local fields and use fluctuating terms represented
by a local white noise process in spacetime.
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The close formal analogy of our stochastic Dirac equation to the equation of quantum-
state diffusion further allows the direct translation of many results of the non-relativistic
theory to the relativistic one. As an example for this fact we have discussed the localization
properties of the stochastic process.

Finally, the formal setting developed in this paper also enables us to formulate
relativistically covariant piecewise deterministic jump processes. This is an important point
since piecewise deterministic processes have been used to describe continuous measurements
in quantum optics [19, 20]. The formalism proposed here therefore allows the development
of a relativistically covariant stochastic theory of continuous measurements of open quantum
systems.
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