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Abstract. A relativistic generalization of the quantum-state diffusion model is developed. The
model describes a Dirac electron which is coupled to an external electromagnetic field and
a dissipative environment. A relativistically covariant stochastic Dirac equation is obtained by
regarding the state vector as a functional on a certain set of spacelike hypersurfaces in Minkowski
space and by the definition of an appropriate Hilbert bundle on this set. The integrability
condition of the stochastic process and the corresponding covariant density matrix equation are
derived. Further, the relativistic equations governing the dynamical state-vector localization are
deduced.

1. Introduction

The model of quantum-state diffusion [1-4] represents the time-evolution of an open
guantum system as a stochastic diffusion process in Hilbert space. It has been designed
in order to describe the dynamics of individual quantum systems under the influence of a
dissipative environment. In particular, it describes the localization or state-vector reduction
during a measurement as a dynamical process [5-7].

To recall briefly the basic equation of quantum-state diffusion, consider an open quantum
system the density matrix of which is governed by an equation of motion in Lindblad
form [8],

dp

&= —i[H, p] + LpL" = ILTLp — IpLTL (1)

where we have chosen units such that 1, H is the Hamiltonian and. some Lindblad
operator which describes the dissipation mechanism. Since the generalization to several
Lindblad operators is obvious, we restrict ourselves in this paper to the case of one Lindblad
operatorL. In quantum-state diffusion one replaces the density-matrix equation (1) by the
following stochastic differential equation for the random state vegtor

dp = —iHedr + (LYYL — SLTL — 2(LTW(L)g dt + (L — (L)@ dW (1) (2)

where do = ¢t + dr) — @(¢), (L) = {(¢|L|p) denotes the quantum expectation value,
and d¥ (¢) is the differential of a complex Wiener process. From equation (2) the density-
matrix equation (1) is recovered by defining the density-matrix as the covariance matrix of
the process,

p = E{lp){epl} 3)
where E denotes the expectation value of the process.
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As it stands, equation (2) is a non-relativistic state-vector equation. The central aim of
this paper is to demonstrate that the stochastic formulation of open quantum systems within
the quantum-state diffusion model can be extended to relativistic quantum mechanics. In
other words, we shall show that the equations of quantum-state diffusion can be cast into a
form which is covariant under Lorentz transformations. From a fundamental point of view
this is an important issue since Lorentz covariance implies that the stochastic formulation is
in agreement with the relativity principle. In order to be specific we consider in the following
a single Dirac electron in an external electromagnetic field as the quantum system. Thereby
we assume that the external fields are so weak that a sensible one-particle description is
justified. Our aim is thus to construct a stochastic Dirac equation which takes the form of
a covariant generalization of equation (2).

The basic idea underlying our construction of a relativistic quantum-state-diffusion
theory is quite similar to that of the Schwinger-Tomonaga formulation of relativistic
guantum-field theory [9]. In an attempt to write the Sidinger equation for the state
vector ¥ of a quantum field in a covariant form, Schwinger and Tomonaga regabded
as a functionalV = W¥[o] on the set of spacelike hypersurfacesn Minkowski space.

This ansatz leads to the following manifestly covariant state-vector equation, the so-called
Schwinger-Tomonaga equation,

SW[o]

o) —IH(x)¥[o] (4)

where H (x) denotes the Hamiltonian density of the theory at the spacetime poilte

shall follow a similar strategy in this paper: we consider below the Dirac wavefungtion

for a single electron not as a function on the spacetime continuum but rather as a functional
on a certain set of spacelike hypersurfaces. A similar idea has been proposed in [10] to
develop a covariant formulation of non-local quantum measurements.

The Schwinger—Tomonaga formulation deals, of course, with a closed quantum system.
Our task will therefore be to couple, in a Lorentz covariant manner, additional dissipative
and stochastic terms to an equation of the above type. It will be shown that this can, in
fact, be done in such a way that a relativistic quantum-state-diffusion equation is obtained.
Our formulation will be very general since it allows the use of Lindblad operators of any
form. In particular it enables us to include local as well as non-local operators.

The paper is organized as follows. In section 2 we introduce an appropriate
parametrization for the set of flat, spacelike hypersurfaces that will be used in our
construction. Each hypersurface is equipped with a covariant scalar product making the
space of Dirac wavefunctions on each hypersurface a Hilbert space. Further, we formulate
the time evolution according to Dirac’s equation in a manner similar to the Schwinger—
Tomonaga equation (4).

Section 3 deals with our construction of a covariant quantum-state-diffusion equation for
the Dirac electron. Its most important mathematical and physical properties are discussed. In
particular, we derive the corresponding covariant density-matrix equations and demonstrate
the normalization of the state vector. Our parametrization of the hypersurfaces in Minkowski
space singles out a specific point which, for simplicity, is chosen to be the origin of the
coordinate system. Restricting ourselves first to homogeneous Lorentz transformations
this point is left invariant and a theory which is covariant under homogeneous Lorentz
transformations is obtained. In order to cope with spacetime translations this distinguished
point will be given an objective physical meaning as an event in spacetime connected with
the preparation process of the initial condition. It will be shown that a stochastic Dirac
equation is then obtained which is covariant under inhomogeneous Lorentz transformations.
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In our formulation of covariance the stochastic time-evolution of the state vector is, therefore,
closely connected with the initial preparation event and its invariant future light cone.
Finally, we derive the covariant equations governing the dynamical localization of the state
vector.

Section 4 contains a summary and our conclusions.

2. The Dirac equation on the set of flat, spacelike hypersurfaces

In this section we shall introduce our basic notions and, in particular, the phase space on
which the stochastic process of relativistic quantum-state diffusion is defined. TheX%pace

of all flat, spacelike hypersurfacesin Minkowski space will be introduced in section 2.1.

On using the Dirac current one can define on each spacelike hypersurfaddermitian
scalar product. With this scalar product the set of all Dirac wavefunctions on a given
hypersurfaces becomes a Hilbert space. The set of all these Hilbert spaces forms a so-
called Hilbert bundle (section 2.2). It will then be shown that the Dirac equation defines a
unitary evolution equation in this Hilbert bundle (section 2.3). Moreover, the condition that
follows from the integrability of the obtained evolution equation will be derived.

2.1. Flat, spacelike hypersurfaces in Minkowski space

In the following a point in Minkowski spac&* will be denoted byx = (x*) = (x°, x') =

(x%, x), where greek indices run from 0 to 3, and latin indices from 1 to 3. The Lorentz
scalar (inner) product is then given by y = x*y, = x°y® — z - y. Throughout this paper
we choose units such that="7% = 1. Lorentz transformations are written as

x* = A" xV. (5)

For the sake of clarity we shall consider here transformatiansn the subgroup of
homogeneous, proper, orthochronous Lorentz transformations. The generalization to
inhomogeneous Lorentz transformations and the proof of Pdraarariance will be given
in section 3.5.

Consider the interioF,. of the forward (future) light cone based at the origin of a given
coordinate system. Clearly, the points Bf are given by the conditions

D _z.x2>0 %> 0. (6)

Each flat, spacelike hypersurfaeein Minkowski space which crossek, can then be
characterized uniquely by the following equation

xzz(x

n'x, = a. ©)
Here,n is a unit 4-vector normal to the hypersurfagce
n? = n*n, =1 n®>0 (8)

anda is a positive Lorentz invariant scalar which represents the Lorentz distarcéodhe
origin. Note thatn is a timelike vector since the hypersurface is assumed to be spacelike.
Thus, each hypersurfaee that crossed, is uniquely defined by its unit normal 4-vector
n and by a Lorentz invariant scalar

Alternatively, we can define the 4-vector= an and rewrite equation (7) as

shx, = 52 9)

We then have? = ¢? > 0 ands® > 0. The 4-vector therefore lies within the interior of
the future light coneF,. In the following we shall use both parametrizations of the flat,
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Figure 1. Geometrical construction of the hypersurface).

spacelike hypersurfaces. When using the parametrizationamda we writeo = o (n, @),
when using the parametrization by the 4-vectowe write 0 = o(s). Clearly, we have
o(n,a) = o(s) sinces = na. We remark that the hypersurfaeds) is the tangent space
of the hyperboloid defined by the equatiofi= s at the pointx = s. Using this fact it is
easy to visualize the geometrical construction of the hypersutféce(see figure 1).

The set of all hypersurfaces(s) will be denoted byx. The physical relevance of this
space for our construction stems from the following facts. Since the forward light cone
F, is mapped onto itself under Lorentz transformatignsalso the set is mapped onto
itself under these transformations. That isgifbelongs toX, then alsoAs belongs to
3. In the special case = (1, 0, 0, 0) the corresponding hypersurface is simply the three-
dimensional position space at fixed tim& = r = a. Since any: can be transformed into
(1,0,0,0) by a suitable Lorentz transformation, the spaténtroduced above consists of
those hypersurfaces that appear as ordinary 3-space at some fixed, positive time in some
Lorentz frame. Thusg is the space of all instantaneous hypersurfaces (with positive time
coordinate) in all inertial frames. As will be shown in section 3, on the basis of this
construction a natural relativistically covariant formulation of the quantum-state-diffusion
model emerges.

As already mentioned, the above construction is similar to the well-known Schwinger—
Tomonaga formulation [9] of relativistic quantum-field theory. For the reason explained
above we restrict ourselves, howeverflad hypersurfaces. Being much simpler technically,
this restriction turns out to be fully sufficient for our purpose.

Of course, by restricting ourselves to homogeneous Lorentz transformations we have
in the above construction distinguished a specific point, namely the basexpein® of
the future light cone. This restriction will be removed in section 3.5 where we shall give a
formulation of quantum-state diffusion that is covariant under Potansformations.

2.2. The Hilbert bundle

With each hypersurface(s) we can associate a Hilbert spakiés) of Dirac wavefunctions
in the following way. Each pointt € o(s) has a unique representation of the form
x = (x%s, x), ), wherex € R3 and the time coordinate is given by

s-ac—i—sz n-x+a

x0(s, ) = 0 = o (10)
On each hypersurface(s) we can then introduce a Dirac wavefunctignby writing
V(x) =¥ (s, x). (11)

This equation means that(s, x) is the value of the Dirac wavefunctiop taken at the
pointx = (x%(s, ), x) € o (s).
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In order to make the set of Dirac wavefunctions on a fixed hypersutféacea Hilbert
space we need to define a positive definite Hermitian scalar product in this space. To this
end, we observe first that the Lorentz metric induces a positive, three-dimensional volume
element d on each hypersurface given by

1
do = w dx. (12)

Sincen is the unit vector normal te (s) the 4-vectom,do is the surface element of the
hypersurface. On using the Dirac current

t=vrty (13)

wherey = ¢ fy? and they* denote the usual gamma matrices (we use the notation of
[11]), we can form the Lorentz invariant bilinear expression

Wlv), = f jn, do. (14)

Physically this expression represents the probability flow through the hypersurfgcand
suggests the following definition of a Hermitian scalar product:

_ dBx .
(V1) = / do Jip — / C 5,20y %, ) (15)

where we defingt = n, y*. Itis easy to show that the expression (15) has the properties of
a Hermitian scalar product. In particular it is a positive definite Hermitian form. This is a
direct consequence of the fact that tidex 4)-matrix y% is positive definite. Note further
that for the special case= (1, 0, 0, 0), that is, fors = (a, 0, 0, 0) definition (15) reduces

to the usual scalar product [11] taken at a fixed tife= ¢ = a,

(V1) @000 = f Ex v, 2)p ¢, @). (16)
The space of Dirac spinors an(s) with finite norm
IVZIERVACAL R a7)

forms a Hilbert space which will be denoted B#(s). Thus, we have associated with each
hypersurface a corresponding Hilbert space of Dirac wavefunctions,

o(s) = H(s). (18)

Note that, in mathematical terms, the mapping (18) defines a so-called Hilbert bundle. Its
base manifold consists of the various hypersurfacés and its fibres are given by the
Hilbert spacedH(s) attached to these surfaces.

2.3. Unitary time-evolution according to Dirac’s equation

We now turn to the description of the dynamics according to the Dirac equation
(y"[d, +ieA,(x)] —m)P(x) =0 (29)

for an electron with charge and massn in an arbitrary external electromagnetic field
described by the 4-vector potential,(x). Any solution of equation (19) defines a Dirac
wavefunction® = ®(x) on the spacetime continuum. Our aim is to reformulate the Dirac
equation as a differential equation in the variablésvhich parametrize the hypersurfaces
o(s). The resulting equation then describes how the Dirac wavefunction changes when
going from one hypersurface to another. To this end, we first write equation (19) as

3o® = —iyO(—iy - V + eA(x) + m)® = —i Hp® (20)
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where Hp denotes the Dirac Hamiltonian. Restricting the solutidix) to some

hypersurfacer (s) we obtain the Dirac wavefunction on that surface. We therefore have
Y (s, ) = (s, @), @). (21)

Differentiating this equation with respect t6 and using the Dirac equation (20) one finds

0

0 ax 0x0
S V@) = (00®) (x) = —IBS—MHDwO, ). (22)

Note that in the last equation the differential oper&orcontained inHp acts only on the
second argument of ®. Since

@ ®)(x% @) = ;0 (x°, ) — %-)(30@)()60, x) = ;Y (s, @) — j—é(ao@(x(’, ) (23)
where (9; ®) and (3p®) denote partial and; ® total derivatives, we find
Hp®(x% ®) =y %%—ivy -V +edx)+m)dx°, )

= y0=iy - Y+ ed(0) +my(s.@) +y° (+i7 - 5 @) 2))

= Hoy (s, x) +iy%y - S%(&*ocb)(xO, )

= i(3p®)(x°, ). (24)
From the last equation we obtain

(177 %) @®) = ~iHo¥ (5. 2) (25)
where] denotes the unit matrix. On multiplying this equation 8y ° we find

$(00®) = —is®y °Hpy (s, z). (26)

Now, multiply both sides by, use the fact thatf = s2, and divide bys?. This yields the
following equation for the time derivative ab,

0
.S
(00®)(x°, ) = —ITfVOHDIII(S, x). (27)
Inserting this expression into equation (22) one obtains
ad (59 9x° 0
8571//(5»33) = -l (SZW> §y Hpy (s, x). (28)

Using equation (10) it is easy to verify that

ax0
s"asu =25, — x,. (29)
Thus, we are finally led to the following differential equation
a .
a5h Vs, z) =—i1V,K($)¥(s, x) (30)
where we have defined the operatorsHi)
1
‘/[L = ‘//I.(S) = ?(Zsp_ - xu) (31)
K(s) = fy°Hp = $(=iv - V +e4°(s, @), @) + m). (32)

Equation (30) which we call transport equation is just a reformulation of the Dirac
equation (20) which represents an evolution equation in our Hilbert bundle. It describes
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the change of the Dirac wavefunction when going from one flat, spacelike hypersurface to
another. As will be demonstrated in the next section equation (30) is an appropriate starting
point for the formulation of a relativistic theory of quantum-state diffusion.

To understand equation (30) in more detail it is helpful to write it in terms of our
(n, a)-parametrization of the hypersurfaces given in equation (7). This is done most easily
by employing the relation

d 1 d 0]

This relation enables one to split equation (30) into two separate equations

gl//(n,a,m) =—iH(s)Y¥(n,a,x) (34)
a
8, —n,m")%lﬁ(n,a,w) =—iW,H()Y(n,a, x) (35)
where we have defined the operators
1
H(s) = ~K(s) =iy’ Hp (36)
W, = Wu(s) = s, — xp. (37)

Equation (34) describes how the Dirac wavefunction changes under parallel translations of
the hypersurfaces. Note that if one considers the family of equal-time surfaces parametrized
by s = (4,0, 0,0), one hasH (s) = Hp and, therefore, equation (34) reduces to the Dirac
equation (20). Equation (35) represents the change of the wavefunction due to variations of
the normal vector of the hypersurfaces. These variations may be realized by varying the
tip of the vectors along the hyperboloid depicted in figure 1. Note that the tedisern, n"

on the left-hand side of equation (35) acts as an orthogonal projection onto the hypersurface
o(n, a). Consequently, the 4-vectd¥,, (which has to be regarded as an operatoHi))

must satisfy the condition” W, = 0, which is easily verfied.

It can be shown that the operators introduced in equations (31), (32), (36) and (37)
are Hermitian with respect to the scalar product (15). This fact is obviously true for the
operatorsV,, and W, since they are diagonal in spin space. To prove the hermiticity of
K (s) one uses the fact that the Dirac operator is Hermitiat{{a, O, 0, 0),

/ Bx ¢ Hpp = / x (Hpy)'¢. (38)

Therefore, we find on using (32) anthy® = %
d®x - 5 [ Bx .
(¢|K¢>s:/SwaK¢:S /S—Ow'Hw

d? ‘ d?

=s? f ~ S (Hoy)i = f — S (KY) 0%
S S

= (K1),

This proves the hermiticity oK (s) and also that o (s) since H(s) = K (s)/a.

The operatoiV, K appearing on the right-hand side of our transport equation (30) is not
Hermitian, sinceV,, and K (s) do not commute. At first glance it might therefore seem that
the transport equation does not preserve the norm of the wavefunction. However, one has to
take care of the fact that by varyingalso the scalar product changes. We now demonstrate
that, taking into account the-dependence of the scalar product, the transport equation is,
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in fact, norm-conserving and thus defines a unitary evolution in the Hilbert bundle. Using

the definition of the scalar product we obtain
L ={v o) + (vl +/d3x1/ﬁ oy~ 2% @)
dsh ST Jase T[T \ask . RS dsh

50 gsH

The last two terms on the right-hand side stem fromstldependence of the scalar product.
SinceV, and K (s) are Hermitian we can write

0 0
<"’|asw”>s +<asu“’

As can be easily verified the following commutation relation holds

w> — iV KT, (40)

i i
[V/A’K] = —ﬁﬁVu-F@So,u- (41)

s

Thus we get
d a . i i
<1ﬁ asﬂw>é + <asﬂ¢‘lﬁ>é = -l <W| - ?m/ﬂ + SOSO’M'w>
dBr . 1 9s°
= —fs—fw‘y‘)mw@%ﬂ(wm (42)

Looking at equation (39) we see that the additional terms that arise due tedéfgendent
scalar product are cancelled by the terms on the right-hand side of equation (42) which stem
from the non-vanishing commutator (41). Thus we have

0]
g (V1Y) =0. (43)

The transport equation (30) is a partial differential equation in four variafflesThe
usual conditions for the integrabilty of such an equation can be written as

3%y 3%y
dsvast  dstdsY
We know, however, by construction that our transport equation is integrable. Given some
initial condition on a specific hypersurface, its solution is given by (21), wiierie the
corresponding solution of the Dirac equation. Thus, inserting the transport equation into
(44) we get the following important relation which may also be verified by an explicit
calculation:

(44)

0 0 :
@(V”K)_&TM(V"K)_I[V“K’ V,K] =0. (45)

This relation will be used later on when we will deal with the integrabilty condition of the
stochastic process of relativistic quantum-state diffusion.

3. Relativistic quantum-state diffusion

We demonstrate in this section that the construction of the preceding section enables us to
formulate a relativistically covariant quantum-state diffusion equation. Such an equation is
obtained (section 3.1) by adding appropriate dissipative and stochastic terms to the transport
equation (30). The formal proof of covariance of the resulting stochastic Dirac equation will
be given in section 3.2. Furthermore, we demonstrate that the stochastic Dirac equation
preserves the norm of the state vector and we shall derive the corresponding covariant
density-matrix equation (section 3.3). In order to have a unique, single-valued distribution
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function of the stochastic process a certain integrability condition has to be satisfied. This
condition will be derived and discussed in section 3.4. We construct in section 3.5 a
stochastic Dirac equation which is covariant under the larger group of proper, orthochronous
Lorentz transformations including spacetime translations. Finally, the localization properties
of the stochastic process are discussed in section 3.6.

3.1. Equation of motion for the state vector
We start by rewriting equation (30) as
dy = —iV, K (s)y ds” (46)

wherey = ¥ (s, ), and d/ = ¥ (s + ds, ) — ¥ (s, ). Our aim is to turn equation (46)
into a stochastic differential equation by adding a dissipative and a stochastic term to its
right-hand side. In order to find these terms we demand that the resulting equation is
Lorentz covariant and that it takes a form which is similar to the non-relativistic quantum-
state-diffusion equation (2).

We are looking for an equation in the variabk#swhich label the hypersurfaces(s).
Therefore, we associate to each hypersurta¢® a Lindblad operatol (s) which acts on
the corresponding state spaks). Thus, for each Hilbert space in our Hilbert bundle we
introduce a corresponding Lindblad operafgy), in the same way as we have introduced
an operatork (s), for example, for each Hilbert space in the preceding section.

Since each Hilbert spack(s) is equipped with a scalar product we can use this scalar
product to define the adjoirit’(s) of L(s). Furthermore, we replace the expectation values
occuring in the quantum-state-diffusion equation (2) by the expectation values

(L)s = (YILS)Y)s (47)

defined through the scalar product (15)%f(s). All that we have to do in order to end

up with a covariant equation then is to construct a Lorentz invariant time parameter that
replaces the time of equation (2). This parameter is taken to be the Lorentz invariant
scalara = +/s2 whose differential is given by

da = n,ds". (48)

This choice is motivated by the fact thatis a Lorentz invariant quantity formed by the
4-vectors* which reduces to the time coordinate for the equal time hypersurfaces given

by s = a(1, 0,0, 0). With this choice the dissipative part of our stochastic Dirac equation
will be proportional to @ and, in order to arrive at a closed equation of motion for the
density matrix (see section 3.3), the stochastic part of that equation will be proportional
to the differential &V (a) of a Lorentz invariant Wiener process. Thus, guided by the
requirements of relativistic covariance we propose the following stochastic Dirac equation

dy = =iV, K ()Y ds +n, ((LY)L(s) — SLI()L(s) — S(LT) (L)) ds”
+(L(s) — (L)) ¥ dW (a) (49)

where d¥ (a) denotes the differential of a complex Wiener process with independent real
and imaginary parts satisfying

(dW (a)) =0 (dW* (@) dW (a)) = da (50)

where the angular brackets denote the expectation value of the Wiener process.
Equation (49) is our central result. It represents a relativistically covariant quantum-state-
diffusion equation for a Dirac electron in an external electromagnetic field.
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3.2. Proof of covariance

We shall give here the formal proof of the Lorentz covariance of the stochastic Dirac
equation (49). To this end, consider two Lorentz frames(coordinatesx) and B
(coordinatest’) whose spacetime coordinates are connected by the Lorentz transformation
(5). We then have the following transformation law

Y'(s’ ) = S(MY (s, z(s', ) = UG, MY (s, x) (51)

wheres* = A*,s”, andS(A) denotes the usual spinor representation of the Lorentz group
[11]. The functionz = x(s’, ') specifies the connection between the space coordinétes
and the space coordinatesof a point on that hypersurface which is given $3yin frame

A and bys™* in frame B. This function is given by

xi(s', &) = (A" ox0(s", ') + (A7Hx. (52)
The corresponding transformation law for the operdt@r) takes the form
L'(s") =U(s', A L(s)U'(s", A). (53)

From the active point of view, the transformation (53) implies that the dissipative

environment is transformed in the same way as the quantum object itself (the Dirac electron).
To demonstrate that equation (49) is covariant under these transformation laws we first look
at the transformation property of the scalar product (15). As is easily demonstrated we have

W = W), (54)

which means that the operatti(s’, A) defined in (51) is unitary. In view of equation (53)
we therefore obtain

(L')y = (L) (L')y = (LT),. (55)
Now, the differential of the wavefunction in fram® is
oU
dy' =UG, A)dy + ﬂ‘” ds™. (56)
S

Substituting @ by the right-hand side of equation (49) and using equations (51) and (53)
we find

dy’ = —i {U(s/, MV KU (s, A) +1 ;9(; UT} V' ds'*
S

+(L)yL'(s) — LT (L' (s") = 3{L"T)e (L)) ¥ da’
+(L'(s") = (L))’ dW (a').

Comparing this equation with (49) we immediately see that our stochastic Dirac equation
is covariant if the following relation holds:

U’ MV, KU, A) +i Ui = vik'(s)) (57)
ds'H K’
where
K'(s) = f(—=iv -V +ed O, ), ') +m). (58)

Equation (57) may be verified by an explicit calculation. Note however, that this equation
expresses nothing but the covariance of our stochastic Dirac equation (48)sfoe= O,
i.e. the covariance of equation (30). The latter fact, in turn, is to be expected since (30) has
been obtained from a Lorentz covariant equation, that is, from Dirac’s equation (19).

Going through the above proof we see that covariance is, essentially, a consequence of
the following facts.
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(1) The dynamical variableg' form a 4-vector whose range is the interior of the forward
light cone F, and is hence Lorentz invariant.

(2) The deterministic transport equation (30) is Lorentz covariant by construction.

(3) The transformation law for the Lindblad operators (53) together with the use of
our Lorentz covariant scalar product (15) implies that the dissipative part of equation (49)
transforms as a scalar.

(4) Sincea is a Lorentz invariant quantity the Wiener differentidh'da) is a Lorentz
invariant process.

3.3. Normalization and density-matrix equation

In order to find the change of the norm of the stochastic Dirac wavefunction we determine
using the Ito calculus

d(y|y)s = (dy|y)s + (vldy) + (dy|dy), + terms from derivative of scalar product
(59)
The terms that stem from the derivative of the scalar product are the last two terms on the
right-hand side of equation (39) multiplied byd Since we know already that these terms
and the terms from the deterministic part of equation (49) cancel each other, we immediately
get
d(Wl)s = (WHLT)L(s) + (L), LT (s) = LT(s)L(s) = (LT) (L) |r); da
WY ILT = (L)) (L = (L))|¥)s da
=0. (60)

The covariant stochastic Dirac equation (49) yields a covariant equation of motion for
the density matrix. The latter is defined in terms of the stochastic Dirac wavefunction by

N 1
pls;x,y)=E {w(s, z) Y (s, W%o} (61)

whereE denotes the expectation value of the stochastic process. Defining the density matrix
in this way we use the following definition for the trace of an operat(y),

trA(s) = /d3x trspin A(s; @, ) (62)

where tgpin denotes the trace over the spinor indices. On using this definition we obtain
from (61)

_ 3 : o 1] _ _
tro(s)=E {/d X trspin ¥ (s, )Y (s, ©)y '/ino} =E{(yl¥)}=1
and

tr{p(s)A(s)} = E{(A)}. (63)
Moreover, definition (61) ensures that the density matrix) is Hermitian with respect to
the scalar product ift{(s).
On using equation (49) a straightforward calculation yields the following equations of
motion for the density matrix,

a .
P = Si[H(s). p] + L)AL (s) = AL Ls)p — 2oLY(5)L(s) (64)

da
v v 90 -
(8, —nun )% = —i[W,H(s), p]. (65)
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Equation (64) is a density matrix equation in Lindblad form. If we choeoses the unit
vector in the direction of the time axi#/ (s) becomes equal to the Dirac Hamiltoni&f

and equation (64) takes on precisely the form of equation (1). iFlependence op is

specified by equation (65).

3.4. Integrability condition of the process

We have seen in section 2.3 that the deterministic transport equation (30) is integrable.
This is due to the fact that its solutions can be obtained by restricting the solutions of the
Dirac equation (20) to the various hypersurfaces, as is expressed in equation (21). In other
words, any solutiony (s, ) of the transport equation is really a function on the spacetime
continuum. This is, in general, not true for the solutions of equation (49). Consider two
different hypersurfaces (s) and o (s’) with some common point, say. Then the values

¥ (s, x) andy (s’, ) of the wavefunctions on the different hypersurfaces at the common
spacetime point do not, in general, coincide. Thus, the solutions of equation (49) are, in
general, not wavefunctions on Minkowski space. However, what we do require is that
the solution of (49) yields a probability distribution for the random wavefunctions which
represents a function on the sEtof flat, spacelike hypersurfaces. For this to be true a
certain integrability condition has to be satisfied which will be derived in this section.

To begin with, we observe that equation (49) is not a stochastic differential equation for
the wavefunctiony in the usual sense. The reason is that equation (49) is an equation in
four variables which form the 4-vectet. To explain the meaning of equation (49) more
precisely consider two points and s, within the forward light cone such that; > a;
and a curves(r) that connects these points, i.e. with initial pointand endpoint;. We
assume thatad> 0 alongs(zr). Without restriction we may then choose the parametef
the curve in such a way thatd= dr. Evaluated along such a curve equation (49) yields
the following ordinary stochastic differential equation

. ds#* 1. 1
Aoy = —iV, K(s)y -t + ((L*).YL(s) = SLIOLe) -~ 2<L*>.Y<L>s> Yy dr
+(L(s) = (L)) ¥ dW (7) (66)

wheres = s(t), ¥ = ¥ (r,x), and dy¥ = ¥ (r + dr, ) — ¥ (r, ). This is a stochastic
differential equation for the procegs(z, x) in the usual sense and can be dealt with by the
well-known Ito calculus. Thus, we see that equation (49) associates to eachs¢tye
stochastic procesg (t, ) along this curve.

For example, if d* = n*da is valid along the curve, that is, i(r) is a straight
line with fixed directionn, the first term on the right-hand side in equation (66) becomes
equal to—iH (s)y dr, where the Hermitian operata (s) is defined by equation (36).

H (s) reduces to the Dirac Hamiltonian if is the unit vector in the direction of the time
axis,n = (1,0,0,0). Thus, in this case the form of equation (66) is identical to that of
equation (2).

It also follows from these considerations that in order for equation (49) to define a
unique stochastic process(s, ) for all s, the following integrability condition must be
satisfied. Suppose we have two different curyg@) and sx(z) of the above type that
connect the given points ands, (see figure 2). Starting from the same initial conditions
at the points; we then get, according to the above prescription, two random wavefunctions
Y1 andy, at the common endpoist; ¥4 is obtained by following the stochastic evolution
alongsi(t) andyr, by the stochastic evolution along(z). The integrability condition then
states that the random wavefunctiofig and i, coincide in the sense that they have the
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Figure 2. Graphical representation of the integrability condition for the stochastic process.

same probability distributions.

The integrability condition formulated above ensures that the probability distribution
of ¥ (s, x) is a single-valued function of, that is, a single-valued function on the whole
interior of the forward light cong .. In particular, this condition implies that the density
matrix equation is integrable. Given some initial condition on a specific hypersurface, this
means that equations (64) and (65) have a unique solptionwhich is a function on the
future light cone.

Mathematically, the integrability condition is expressed most conveniently by
reformulating the stochastic Ito equation (49) by means of the corresponding Fokker—Planck
equation for the probability density function®l = P[s, ¥] which is given by

a
BTHP[S’ Y] = {Lyu(s) + nu M)} Pls. Y] (67)

where we have introduced the first-order functional differential operator describing the
deterministic drift

) )
g =i [ (0 G@l- L) e
(A =1,...,4denotes the spinor index) and the second-order functional differential operator
describing the diffusion process

2

_ 3 3 ) _ i N
M(s) = f o / sy~ V@I = L@, (69

In the above equation8/sv 4 (x) and §/8vy % (x) denote functional Wirtinger derivatives
[12, 13]. The differential equation described By, is given by

0 .
%—Ml//(s, x) = =G, ¥ (s, )

= — VLKV +n, (LN L(s) = 3LT)L(s) = 3L (L)) y. (70)
One can now express the integrability condition directly in terms of an equation for the
probability distribution itself, namely by

9°P  9°P 1)
dsv sk OsHdsy

Inserting (67) into (71) we get
(8/:“ Ly

o w) P+ (L Ly — LLL)P
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IM M
+n,, ( o (LM —Mcv)) P (a (LM - Mm)

Setting equal to zero the first line in this equation we obtain a condition which is equivalent to
the integrability condition for the deterministic drift (70). It is thus convenient to formulate
the integrability condition as follows: (i) the deterministic drift of the process is integrable
and (ii) the condition

asV ash

holds. By a lengthy but straightforward calculation and by using the integrability condition
(45) of the transport equation one can show that the integrability condition for the
deterministic drift is satisfied if the Lindblad operatb(s) obeys the equation

aL(s)

ast
where R(s) can be anys-dependent operator. We now demonstrate that condition (73)
also guarantees that (72) is satisfied. This shows then that (73) is a sufficient integrability
condition.
Condition (72) means that for any function&ll= F[y] we must have

Mad
nME{ Py

n, <8M — (LM — Mm) P—n, (BM — (LM — ML‘M)> P=0 (72)

= —i[V.K(s), L(9)] +nuR(s) (73)

F o+ (£3M% — /\/ladﬁfj‘d)F}

Mad
—nUE{ o F + (L3M? — Ma"[,;d)F} =0. (74)

Note that the expectation valuE of the process is defined explicitly in terms of the
probability density functional as [12, 13]

E(F) = / Dy Dy* Pls. ¥1F[¥]. (75)

The index ‘ad’ indicates the adjoint functional operator. Performing the functional
differentiations we get after some algebra the following equation which is equivalent to
equation (74),

d3 de 'E { F ) L — (L , / *}
/ SUA@OVE @) )(Q V(@) al(L — (L)) ¥ (@)]p

8°F
3 3./ NN
—n“/d X /d x E {SKZ’A(CU)W[(L - (L>s)1ﬁ($)]A(Qv1ﬁ(33 ))B}

~( o) =0 7o)
where
aL
0= "1 4ivk ), L] —< ) LK), L<s>]> (77)

On using equation (73) we observe th@g is proportional ton,,
0, = ny(R — (R)y). (78)
Thus, we immediately see that (76) is fulfilled since the temsgr, is symmetric.

We now demonstrate that our integrability condition (73) can always be fulfilled. To
prove this we note first that by employing tlie, a)-parametrization of the hypersurfaces
equation (73) can be decomposed into two separate equations,

W AL(s)
a anv

(6} — = —i[W,H(5), L(s)] (79)
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and

agis) — _i[H(s), L(s)] + R(s). (80)

Since the operatoR(s) is arbitrary we see from equation (80) that thelependence is
not fixed by the integrability condition. This means that one can freely choose-the
dependence of.(s) = L(n, a) corresponding to the physical situation under consideration
(see the example below). To show that the integrability condition can always be fulfilled
one therefore has to show that equation (79) is integrable and determineslépendence

of L(s). This can be done by noting that equation (73) is integrablekfer 0. Employing
equation (73) forR = 0 we obtain

92L 92L oV, K) 3(V,K)
— = —I — ,L|—|V.K,|V,K, L VWK,|V.K, L]].
asvost  0stosY [ asY asH ] VK. 1 I+1 [V I
(81)
By means of the Jacobi identity this can be written as
3L 8%L 3 d
- =—i|—WV,K)— —((V,K)—Ii[V,K,V,K],L|=0 82
dasvas*  ostosY Il:as"( WK 8slt( ) = ilVy ] i| (82)

where equation (45) has been used in the second equation. Thus, equation (73) is integrable
for R = 0. We can therefore solve this equation in the neighbourhood of eachdfitedet

a solution of equation (79) for thig. Since thea-dependence is arbitrary as noted above,

we then have completely fulfilled the integrability condition.

To give an example for the solution of equation (79) we consider a standard example
from quantum optics, i.e. a two-level atom in the radiation field at zero temperature. For this
case we havé (s = a(1,0,0,0) = |¥,) (V.| = o~, wherey, (x) denotes the ground state
and . (x) the excited state. Denote fgy ,(x) = exp(—ieg,gxo)wg,g(:c) the corresponding
stationary solutions of the Dirac equation with time-independent Dirac HamiltoHizn
The operatorl (s) defined in the position representation by

) 1
L(s; x,y) = 5, (xs, z), 2)¢! (x°(s, v), y)y%@ (83)

then fulfils the equation

ags(f) = —i[V,K(s), L(s)] + (g, — €)1, L(s). )

Multiplying this equation by the tenso(s, — n,n") and summing oven one gets
equation (79). Thus, equation (83) represents the relativistic generalization of the negative
frequency part ~ of the atomic dipole operator which is widely used in quantum optical
applications (see e.g. [14-16]).

The above example also indicates how to solve the integrability condition in the general
case for a time-independent Dirac Hamiltonian: choose first a complete orthonormal set
do (x) = exp(—ie,x%) ¥, () of stationary solutions of the Dirac equation corresponding to
the energieg,. The solution of equation (79) which reduces foe (a, 0, 0, 0) to some
given operatoi.©© reads

) N 1
L(sim,y) = Y _ €%, (x°s, @), ) (Y| L Y1)} (x°(s, 0, v (85)
o, B
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Since, as we have just seen, each term in the sum @wand g satisfies equation (79),
equation (85) gives a solution of our integrability condition. On the equal-time hypersurfaces
given bys = (a, 0, 0, 0) we havea = x° and therefore

L((@.0,0.0): . y) = Y Yu(@) (YulLOWp)vj@) = LO@. y) (86)
a.p
as required.

3.5. Poincag covariance

Up to now we have restricted ourselves to homogeneous Lorentz transformations which
leave fixed the origice = O of the coordinate system. The definition of the 4-veator
of a = /52 and that of the corresponding hypersurfaqg) distinguishes a certain point,
namely the origin of the coordinate system which serves as the base point of the future light
coneF,.

Without additional physical inputhe stochastic Dirac equation (49) i®t covariant
under spacetime translations due to this distinction of a specific point. However, a stochastic
equation of motion whichs, in fact, covariant under general inhomogeneous Lorentz
transformations (Poincartransformations)

X' =Ax+y (87)

can be obtained if one gives this distinguished point (which plays the role of the base

point of the future light cone) an objective physical meaning as a certain spacetime event

b and if one introduces the coordinates lofas parameters into the stochastic equation

of motion as explained below. The same method is used in the representation theory of

Poincaé-covariant quantum-dynamical semigroups for relativistic unstable particles [8].
Once such a poink has been fixed we may definé (b) to be the future light cone

based at this poinb. The interior of F,(b) is defined by the conditionér — b)?> > 0 and

x% — b9 > 0. The former construction is recovered by setting= 0. The flat, spacelike

hypersurfaces = o (n, a, b) which crossF, (b) can then be parametrized uniquely by the

equation

n*(x, —by,) =a. (88)

This implies that under Poindatransformations (87) we have the following transformation
laws

bV=Ab+y n' = An a=a s’ = As. (89)

Thus, according to their geometrical meaningand s transform as true 4-vectors
transforms as a scalar ahdas a coordinate vector.

To define the spacetime poiatwe first remark that in order to describe a physical
situation by means of a stochastic differential equation we need, of course, an initial
condition which can be given by a pure or mixed state. In any case, according to
the rules of quantum mechanics such an initial state requires an appropriate preparation
measurement. The outcome of this measurement constitutes a classical event with certain
spacetime coordinates. The classical event could be defined, for example, by the click in a
particle detector, or by a certain meter position. We can then défjres the coordinates
of the classical event of the measurement which leads to the preparation of the initial state.
The interior of the forward light coné’, (b) which defines the admissible hypersurfaces is
then nothing but the absolute future of the classical measuring évent
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Starting now from the parametrization (88) and following the line of reasoning of
sections 2 and 3.1 one is then immediately led again to the stochastic Dirac equation (49),
where, however, the 4-vecto#s, and W, have to be defined as

1
V; = (ZS/I. - [X,,_ - b/L]) W[l. =S — [xu - by.] (90)

L S2
Note thatW,, is now a 4-vector operator which is tangent to the hypersuddeea, b), that
is, we haven*W, = 0. The stochastic Dirac equation (49) together with these definitions
and the transformation laws (89) is obviously covariant under Pdrtcansformations (87).

We emphasize that covariance under spacetime translations as formulated above is to
be understood in a sense which differs from the usual one. Covariance in the usual sense
means that one has a certain equation of motion which can be shown to be covariant
without reference to an initial conditionIn our formulation above, however, covariance
under spacetime translations is guaranteed only if one introduces the initial measurement
eventb and the invariant future light cone originating fraiminto the stochastic equation
of motion. Thus, a certain aspect of the initial condition, namely the coordinates of the
measurement event (and not the initial state vector itself) enter the dynamical equation.
Initial condition and stochastic time-evolution are therefore intimately connected in our
theory and translational covariance holds if one transforms the whole equation of motion
together with the invariant future light cone of the measurement event.

3.6. Relativistic localization

One of the most important features of quantum-state diffusion is the localization of
dynamical variables induced by the dissipative and stochastic coupling to the environment
[5, 6]. As an application of our relativistic formulation we shall derive in this section the
relativistic equations governing the localization process.

For the dynamical observable we take the Linblad operatay itself and assume
that L(s) is self-adjoint and independent ef This means thal.(s = (a,0,0,0)) is a
time-independent Sctdinger operator defined on the equal-time hypersurfaces of a certain
coordinate frame. We further assume tHaty) commutes with the Hamiltoniai (s)
defined in equation (36),

[H(s), L(s)] =0. (91)

It follows then from (80) that the operatdk(s) is identically zero. Thus we have as a
consequence of the integrability condition

dL(s)
asH

This equation represents the relativistic formulation of a quantum non-demolition condition.
Such conditions are employed when discussing localization for so-called wide-open systems
[6]. Itis important to note that we cannot simply & = 0 as in the non-relativistic theory,
for this would imply K (s) = 0 and the commutation relation (41) would be violated.

Using Ito calculus we obtain for any operatécs),

= —i[V,K(s), L(s)]. (92)

0A
d(A), = <8s“> ds" + (dyr|AlYr)s + (Y IAldY)s + (| Aldyr)s
d®x 0 1 9s°
+</s01/f Y yMAI//_EE)ST

<A>S) s (93)
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where the last two terms stem from the derivative of the scalar product (see section 2.3).
By means of the stochastic Dirac equation (49) we find
A
d(A), = <§M +i[V,.K, A]> ds" + (AT + TTA + MTAM), da
N
+(AM),dW (a) + (M A); dW*(a) (94)
where we have used the commutation relation (41) and introduced the abbreviations
T = (LY),L(s) = 3L ()L(s) — 3(LT)s(L);
M = L(s) — (L);.

s

(95)

Now, if the operatord(s) = L(s)* is some power of.(s) we get on using equation (92)
and (94)

d(LF)s = (LX(L — (L)) (@AW (a) + dW*(a)). (96)

Taking the expectation valug of equation (96) fok = 1 andk = 2 one finds the following
equations for the mean and dispersion/of

d 0
BTHE{(LM =0 PP Var(L) =0 (97)
where we have introduced the variance
Var(L) = E{(L%)} — (E{{(L),})* = tr{L?p} — (tr{Lp})*. (98)

Equation (97) states that the usual quantum expectation value and the varidnge afe
constant on all hypersurfaces.
Equation (96) also yields fat = 1

d(L)s = o®(L)(dW () + dW* (@)) (99)
where we have introduced the dispersionigf) in the statey (s, ) by
o?(L) = (L%, — (L)2 (100)

Thus, as in the non-relativistic theory the self-diffusion bfs) is proportional to the
dispersion ofL(s). Localization of the state vector dynamics can be described using the
guantity

Var, (L) = E{c?(L)}. (101)

This is the expectation value with respect Bis, ] of a 4th order moment of the
wavefunction which cannot be expressed in terms of the density matrix. One finds on
using equation (96)

2 Nan(L) = ~2E([0*(L)P) (102)
a
and, equivalently,
9
S Vary (L) = —2n, E{[c*(L)]?}. (103)

Equations (102) and (103) represent the covariant equations governing the dynamical
localization in our relativistic theory. Since it follows from equation (102) that

% Vary (L) < —2[Vary(L)]? (104)

we can conclude that Va(L), starting from some (positive) value at an initial valueaof
decreases to zero for increasing Note that (101) is the expectation of the dispersion of
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L(s) in the statey (s, ). Therefore, if the value VatL) = 0 is finally reached, the state
vector ends up with probability 1 in an eigenspacelLg$). This is just the state-vector
localization to the eigenspaces of the dynamical observablg

We finally remark that the quantum variance Mar can be written as a sum of two
variances [17]

Var(L) = Vary (L) + Vary(L) (105)
where Vag(L) is defined in (101) and VaftL) is given by
Vary(L) = E{(L)2} — (E{(L);)*. (106)

Since ¢ (s, ) is a random variable{L), is a real random number. \AL) is therefore
the statistical variance of the random numbgy,. Since Vai(L) decreases monotonously
to zero for increasing, and since VaiL) stays constant, it follows that AZ) increases
monotonously until it reaches the value Mdr) = Var(L). This shows that in the final state
of the process the quantum statistical variancg Mais equal to the statistical fluctuations
of the stochastic variablgl); measured by VacL).

4. Summary and conclusions

In this paper we have generalized the quantum-state-diffusion model to relativistic quantum
mechanics. This has been achieved by introducing th& s#tflat, spacelike hypersurfaces
which cross the future light cong, and associating with each hypersurface ¥ a scalar
product and a Hilbert space of Dirac wavefunctions. On the basis of these constructions a
stochastic Dirac equation for an electron in a dissipative environment has been formulated.
This equation takes the form of a direct generalization of the equation of motion of the
guantum-state-diffusion model.

We have discussed several properties of our stochastic Dirac equation. First, we have
derived the corresponding density matrix equation and the normalization of the state vector.
Further, the integrability condition has been derived which guarantees that the stochastic
process has a unique probability density functional which is single-valued on the whole
interior of the future light cone. It has been demonstrated that the integrability condition can
always be satisfied and some examples of its solution have been discussed. The extension
of the formalism to include Poincarcovariance has been given. Finally, some aspects of
the localization properties of the relativistic theory have been discussed.

Concluding, let us emphasize the main advantages of our relativistic fomulation. First,
by formulating the stochastic process as a process for wavefunctions defined on the
hypersurfaces, that is, as a process in the Hilbert bundle, our stochastic Dirac equation is of
great generality. Since, as we have demonstrated, the integrability condition for the process
can always be solved, we do not have to impose any restriction on the Lindblad operator.
Thus, the Lindblad operator can be any local or non-local operator and the generality of
the non-relativistic theory is maintained in our formulation. This point is essentially what
distinguishes our approach from that of Ghiraetial [18]. These authors have developed a
stochastic state-vector theory for relativistic quantum fields. Their approach is more general
in the respect that they treat relativistic many-particle systems (although, as it seems, in
their theory difficulties with infinities are more serious than those encountered in usual
quantum-field theory and it is not clear whether their approach yields a renormalizable
theory). However, the approach of [18] is more special than our formulation in the respect
that they treat only interactions involving local fields and use fluctuating terms represented
by a local white noise process in spacetime.
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The close formal analogy of our stochastic Dirac equation to the equation of quantum-
state diffusion further allows the direct translation of many results of the non-relativistic
theory to the relativistic one. As an example for this fact we have discussed the localization
properties of the stochastic process.

Finally, the formal setting developed in this paper also enables us to formulate
relativistically covariant piecewise deterministic jump processes. This is an important point
since piecewise deterministic processes have been used to describe continuous measurements
in quantum optics [19, 20]. The formalism proposed here therefore allows the development
of a relativistically covariant stochastic theory of continuous measurements of open quantum
systems.
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